SHG-specificity of cellular Rootletin filaments enables naïve imaging with universal conservation

نویسندگان

  • Toshihiro Akiyama
  • Akihito Inoko
  • Yuichi Kaji
  • Shigenobu Yonemura
  • Kisa Kakiguchi
  • Hiroki Segawa
  • Kei Ishitsuka
  • Masaki Yoshida
  • Osamu Numata
  • Philippe Leproux
  • Vincent Couderc
  • Tetsuro Oshika
  • Hideaki Kano
چکیده

Despite growing demand for truly naïve imaging, label-free observation of cilium-related structure remains challenging, and validation of the pertinent molecules is correspondingly difficult. In this study, in retinas and cultured cells, we distinctively visualized Rootletin filaments in rootlets in the second harmonic generation (SHG) channel, integrated in custom coherent nonlinear optical microscopy (CNOM) with a simple, compact, and ultra-broadband supercontinuum light source. This SHG signal was primarily detected on rootlets of connecting cilia in the retinal photoreceptor and was validated by colocalization with anti-Rootletin staining. Transfection of cells with Rootletin fragments revealed that the SHG signal can be ascribed to filaments assembled from the R234 domain, but not to cross-striations assembled from the R123 domain. Consistent with this, Rootletin-depleted cells lacked SHG signal expected as centrosome linker. As a proof of concept, we confirmed that similar fibrous SHG was observed even in unicellular ciliates. These findings have potential for broad applications in clinical diagnosis and biophysical experiments with various organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles

The centrosome linker proteins C-Nap1, rootletin, and CEP68 connect the two centrosomes of a cell during interphase into one microtubule-organizing center. This coupling is important for cell migration, cilia formation, and timing of mitotic spindle formation. Very little is known about the structure of the centrosome linker. Here, we used stimulated emission depletion (STED) microscopy to show...

متن کامل

Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging.

Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables us to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here, we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nanoprobe in tip-enhanced near-field microscopy...

متن کامل

Second harmonic imaging of intrinsic signals in muscle fibers in situ.

We use second harmonic generation (SHG) imaging to study and quantify a strong intrinsic SHG signal in skeletal muscle fiber preparations and single isolated myofibrils. The intrinsic signal follows the striation pattern of the muscle cells and is positioned at the sarcomeric location of the myosin filaments. Interestingly, the signal is enhanced at the region where the myosin heads are located...

متن کامل

Rootletin forms centriole-associated filaments and functions in centrosome cohesion

After duplication of the centriole pair during S phase, the centrosome functions as a single microtubule-organizing center until the onset of mitosis, when the duplicated centrosomes separate for bipolar spindle formation. The mechanisms regulating centrosome cohesion and separation during the cell cycle are not well understood. In this study, we analyze the protein rootletin as a candidate cen...

متن کامل

Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet

The ciliary rootlet, first recognized over a century ago, is a prominent structure originating from the basal body at the proximal end of a cilium. Despite being the largest cytoskeleton, its structural composition has remained unknown. Here, we report a novel 220-kD protein, designated rootletin, found in the rootlets of ciliated cells. Recombinant rootletin forms detergent-insoluble filaments...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017